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INTRODUCTION

• Flexibilityis important for high speed,
high precision operation of lightweight
manipulators.
• Accurate dynamic modeling offlexible
robot arms is needed. Previous work has mostly
been based on linearelasticitywith prescribed
rigid body motions (i.e.,no effectof flexible
motion on rigid body motion).
• Littleor no experimental validationof
dynamic models for flexiblearms isavailable.
Experimental resultsare also limited for
flexiblearm control.
• We include the effects of prismatic as
well as revolute joints.
• We investigatethe effectof fullcoupling
between the rigid and flexiblemotions, and of
axial shortening.
• We also consider the controlof flexible

arms using only additional sensors.



BACKGROUND

Research since 1970's
(e.g., IBook, Maizzo-Neto, Whitney 75])

Modeling of flexible mechanisms and structures
(e.g., Elasto-Kineto Dynamics, Floating
Frames, 70's)

Approaches to control
Trajectory planning [Meckl, Seering 83,85]
Openk)op(none)
Closed loop with micromanipulator

[Cannon et al, Book et al]
Closed loop with additional sensors only (none)

Experimental work
[Zalucky and ltardt 84]
[Cannon et al 83, 84]

Theoretical control studies
[Book et al, Cannon et al, etc, early 1980's]
Various control strategies proposed typically
assuming all states available, no spillover, simple
models, no implementation considerations.

74-7



MODELING AND SIMULATION OF FLEXIBLE
ROBOTS WITH PRISMATIC JOINTS

• Robots with both rigid and flexiblelinks
attached with revoluteand/or prismatic joints
can be modeled and analyzed.
• The equations of motion are derived using
Lagrange's equations.The prescribed motion,
and prescribed torque/force cases can both be
handled.

• Flexible elements are represented as
Euler=Bernoulli beams, and the axial shortening
effect is also included.

• Finite element analysis is used for the
discretizationof the resultinghybrid equations
of motion.

• Constraints are handled using Lagrange
multipliers.
• The resultingalgebraic-differential
equations are solved numerically using
constraint stabilizationmethods.
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LABORATORY ROBOT

Small table top spherical coordinate robot with 3 DOF

Designed and built at UM

Interfaced to an IBM PCIXT

Convlenent test bed experimental research work

r and 0 axes are dc motor driven through ieadscrews

axis is dc motor ddven driven through a gear train

all axes have tachometers and optical incremental
encoders with counter circuits

last link is intentionally designed to be flexible

accelerometers (in two orthogonal directions)
measure end of arm accelerations which are
integrated to get velocities and positions
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SUMMARY AND CONCLUSIONS

• A general modeling procedure for robot

arms consisting of rigid and flexible links
connected by revolute and/or prismatic joints
has been developed and experimentally
validated.

• The significance of full coupling (effect
of flexlble motion on rigid body motion) has
been demonstrated.

• The axial shortening effect is shown to be
significant for high speed operation of
lightweight manipulators.



CONTROL OF A LEADSCREW DRIVEN FLEXIBLE

ROBOT ARM

• The laboratory robot is used to compare

the performance of a rigid body motion

controller with that of a rigid and flexible

motion controller.

• The rigid body motion controller uses
only the joint motion measurements and joint
actuators. The rigid and flexible motion
controller also uses the end of arm motion

measurements, but no additional actuators.

• The leadscrew transmission
characteristics as well as observation and

control spillover are considered.

• The numerical and experimental results

show good agreement, and indicate that
significant reductions in arm vibration are
possible through use of the rigid and flexible
motion controller.
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PHYSICAL CONSTRAINTS

The physical constraints that are considered in this
work are the ones imposed by the leadscrews only.

• Condition for self locking assumption to be valid
is:

iz> tan(_ 1)

where

iz is the thread coefficient of friction•

¥1 is the thread helix angle•

• Effect of the self locking condition•

• Effect of coulomb friction•



CONTROLLERDESIGN

Equationsofmotion:
/

T_ [_,n, 7-,7

Linearizedequations:

B

Integralplusslatefeedbackcontroller:
t t- _"

# : (A_-_sK__)_



J

l
I
I

L

I

I
I
I
I

I
I

v

Block diagram of the Integral plus state feedback controller.
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the rigid and flexible motion cQTltroller In the
reduced order model case.
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Flexible motion coordinate, q11(t), In response to

the rigid and flexible motion controller In the
control spillover case.

,k"

ml

;I

!
: I l i I 4

O.88 1.80 %4O

Figure 6.

nmL.l U

Flexible motion coordinate, q12(t), In response to

the rigid and flexible motion contro(r6_T In the
control splllover case.
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Flexible motion coordinate, q12(t), In response to

the rigid and flexible motion controller In the
control and observation splllover case.
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the rigid and flexible motion controller In the
control and observation splllover with structural
damping Included.



Standa_.d Set of Physical
Parame_.e_s

Mass of the first beam (m I)
Mass of the second beam (m..)

Mass of the Payload (% }
Cr_s sectional area of the sexond

beam (,4 _)
Length of the first beam (L l)
Length of the second beam (L2)
Gr_vitationM _:ce]er'_tion (g)
Aluminum density (p)

Flexur:d rigidity (El)
Reference position for r
Reference position for #
Reference position for $
Desired reference pc_ition for r
Desired refert.aee pmition for e
Desired reference position for #
Serve nstlrsd fr_quceey for r (_.)
Servo ,_rd freq, eney for # (_, _)
Serve aattlrs/, frequency rot $ (_, ,)
Flexible am4_, zaiu, K r15

Flexible motion lain. Kr_
Ftexib_ _ I_s/m, K ra,lo

TABLE I

System VALUE

0.454 Kg
0.816 Kg
0.07 KS

0.000151 m:

0.233 m
2m

9.81 m/,ec:

°-707 Kg/m _
770.87 P_

1.85 m
Or'sd

Or'_d
2m
0.5 rad
0.5 rxl

.4 r:d/see
: 4 r,d/_e

S r:_/,ee
.O.O001T$

-0.084
1._

rigid body controller

rigid and flexible
motion controller

settling time

(seconds)

11.0

3.0

maximum deflection

(peak to pezk)

7.Smm

2.7ram
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experln'._ntal work.

772



ORIGINAL PAGE IS

OF POOR QUALITY

vm_

|

iLO0 _ 24.00

F'19uro 14.

_U

Total vertical deflection In response to the rigid and
flexible motion controller In the experimental work.

773



RIOIDBODY CONTROLLER VERSUS

RIOIDAND FLEXIBLEHOTION CONTROLLER

Simulation results:

* Control spillover effect can be observed, but
does not. cause significant deLerioraLion.

* ConLrol and observaLion spillover can
desLabilize Lhe residual mode. However, a
small amounL of damping (0.0145) eliminaLes
Lhe problem.

* SeLLling Lime is reduced from 3.5 Lo 1.07
seconds, and maximum vibraLion ampliLude is
reduced by 5OZ.

ExperimenLal resulLs:

* WiLh low pass filLering and lighL sLrucLural
damping, no deLrimenLal spillover effecLs were
observed.

* SeLLling Lime is reduced from 11 Lo :3
seconds, and maximum vibraLion ampliLude is
reduced by 75_,.
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SUMMARY AND CONCLUSIONS

• A dynamic model of a spherical coordinate robot arm,
whose last link is flexible, is developed. The
constraints imposed by the leadscrew transmission
mechanisms are also considered•

. The interrelationships between the robot arm
structural flexibility and the controller design
are investigated using a rigid body controller.

• The rigid and flexible motion controller, which employs
additional sensors only, has led to an approximate 50%
reduction in the magnitude of the flexible motion even
in the presence of the observation and control
spillover.

• The experimental results of the rigid and flexible
motion controller show good agreement with those
of the digital simulation.



SUMMARY AND CONCLUSIONS

• A general modeling method for robot arms
with flexible and rigid links connected by

prosmatic and revolute jointshas been
presented and experimentally validated.

• A flexible arm controller which uses end

of arm motion meaurements, but only joint
actuators has been numerically and
experimentally studied and found to give good
rigid body control with significantreduction in
end of arm vibrations.
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